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Abstract

In the Dirac bracket approach to dynamical systems with second class constraints observables are
represented by elements of a quotient Dirac bracket algebra. We describe families of new realizations of
this algebra through quotients of the original Poisson bracket algebra. Explicit expressions for generators
and brackets of the algebras under consideration are found.
c© 2005 Elsevier B.V. All rights reserved.

MSC: 70H45

Keywords: Hamiltonian systems with constraints

1. Introduction

In a dynamical system with first class constraints, physical functions are elements of a Poisson
bracket algebra of first class functions (see e.g. [1]). Observables are classes of the physical
functions modulo the functions vanishing on the constraint surface.

In the Dirac bracket approach to a system with second class constraints [2] the original Poisson
bracket is replaced by the Dirac one and constraints become first class. In this case all the
functions on the phase space are first class and observables are elements of the Dirac bracket
algebra of all the functions modulo the functions vanishing on the constraint surface.

The latter quotient algebra can be realized as a Poisson bracket algebra of the functions on the
constraint surface [3]. Another useful realization can be obtained by using the Abelian conversion
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of second class constraints [4]. The algebra of observables is also realized as a quotient of the
original Poisson algebra of first class functions [5].

Description of different realizations of observables is important in the context of deformation
quantization [6]. One can expect quantization of a Poisson algebra not to depend on its
realization. If this is the case, then using realizations of observables through the original Poisson
bracket and Fedosov quantization [7], one can avoid deformation of the corresponding Dirac
bracket algebra.

The aim of this article is to present the new Poisson bracket algebras which are isomorphic to
the algebra of observables in dynamical systems with second class constraints.

The construction uses a set of nested subalgebras of the original Poisson bracket algebra
of first class functions and their ideals which are generated by the functions vanishing on the
constraint surface. The existence of such subalgebras imposes some restrictions on possible
constraints. Solving the defining equations we find explicit expressions for generators of the
algebras under consideration. This enables us to construct families of new isomorphic images
of the algebra of observables. The new algebras are Poisson ones with respect to the original
bracket.

The paper is organized as follows. In Section 2 we review a description of observables in
systems with second class constraints. In Section 3 we describe the family of the constraints
under consideration and find explicit expressions for the functions on phase space which serve
as generators of new Poisson bracket algebras. These algebras are constructed and studied in
Section 4. In Section 5 we describe new realizations of the algebra of observables in a system
with second class constraints.

2. Realizations of observables

Let M be a phase space with the phase variables ηn, n = 1 . . . 2N , and the Poisson bracket
[ηm, ηn

] = ωmn(η). Let H(η) be the original hamiltonian and ϕ j (η), j = 1 . . . 2J , the second
class constraints det[ϕ j , ϕk]|ϕ=0 6= 0. We shall assume [2] that all the quantities vanishing on
the constraint surface are linear functions of (ϕi ).

The Hamilton equations of the system under consideration read

d
dt
ηn

= [ηn, HT ], ϕ j = 0. (1)

Here

HT = H + λ jϕ j (2)

and the λ j = λ j (η) are defined by the equations

[HT , ϕ j ]|ϕ=0 = 0. (3)

From (1) it follows that

d
dt

f = [ f, HT ], ϕ j = 0 (4)

for all f = f (η).
Using (3) one can write Eq. (4) as

d
dt

f = [ f, HT ]D, ϕ j = 0. (5)
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Here the Dirac bracket was introduced:

[g, h]D = [g, h] − [g, ϕ j ]c jk[ϕk, h], c jk[ϕk, ϕl ] = δ jl .

The constraints (ϕ j ) are first class with respect to the Dirac bracket: [ϕ j , ϕk]D = 0 and the
physical functions are defined by the equations

[ f, ϕ j ]D|ϕ=0 = 0

which are satisfied identically. Let A be the space of functions on M and Φ ⊂ A be the subspace
of the functions which vanish on the constraint surface. Then the algebra of observables is the
Dirac bracket algebra A/Φ. Note that A/Φ is also an algebra with respect to the pointwise
multiplication and hence A/Φ is a Poisson algebra.

Let { f } ∈ A/Φ be the coset represented by f ∈ A. Then, using (5) and (3) one can obtain the
Hamilton equations for observables:

d
dt

{ f } = [{ f }, {H}]D. (6)

In a recent article [5] a new approach to quantization of the system (1) was proposed. Let Υ
be the algebra of the functions which are quadratic in ϕ j and let Ω be the algebra of first class
functions:

Ω = { f ∈ A | [ f, ϕ j ]|ϕ=0 = 0}. (7)

For u ∈ Υ we have u|ϕ=0 = 0. The set Υ includes the element ϕ jϕ j and hence from the
equations u = 0, u ∈ Υ , it follows that ϕ j = 0. Thus, the constraints (ϕ j ) and Υ are equivalent
and we can replace Eq. (1) by

d
dt

f = [ f, HT ], ui jϕiϕ j = 0. (8)

Here ui j = ui j (η) are arbitrary functions. In contrast with the original ones, the new constraints
Υ are first class.

In this approach the algebra of physical functions consists of all the functions which satisfy
the equations

[ f, u] ∈ Υ (9)

for all u ∈ Υ . One can show that these equations are equivalent to the definition of first
class functions (7) in the original second class system. Due to Eqs. (9) and (7) the algebra of
observables is the Poisson algebra Ω/Υ .

Let { f }
•

∈ Ω/Υ be the coset represented by f ∈ Ω . Then the equations for observables read

d
dt

{ f }
•

= [{ f }
•, {HT }

•
]. (10)

The present approach and the Dirac bracket one are related by the isomorphism of the algebras
of observables Ω/Υ and A/Φ [5]:

T ({g}
•) = {g}.

Below we shall obtain new realizations of the algebra A/Φ through quotients of the original
Poisson algebra.
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3. Generators of Ω s+1

Let Ωs+1, s ∈ N , be the space of the functions on M which are defined by the equations

[ϕ j , g̃] ∈ Υs . (11)

Here

Υs = {u ∈ A | u = u j1... jsϕ j1 . . . ϕ js , u j1... js (η) ∈ A}.

It is seen that Υs+1 ⊂ Ωs+1 ⊂ Ωs , Ω2 = Ω ,Υs+1 ⊂ Υs,Υ2 = Υ and Υ1 = Φ. We shall write
Υ0 = Ω1 = A.

To describe elements of Ωs+1 explicitly let us consider Eq. (11) with the boundary condition

g̃(η) ∈ {g(η)}. (12)

From (12) it follows that g̃|ϕ=0 = g or g̃ = g + viϕi for some functions vi (η). Hence a
solution to Eqs. (11) and (12) can be represented in the form

g̃ = g +

s∑
r=1

1
r !
νi1...ir (η)ϕi1 . . . ϕir + νi1...is+1(η)ϕi1 . . . ϕis+1 . (13)

Note that the last term of (13) satisfies (11) for arbitrary νi1...is+1 .

We shall assume that νi1...ir , r = 1 . . . s, is symmetric:

ν. . . ia . . . ib . . .︸ ︷︷ ︸
r

− ν. . . ib . . . ia . . .︸ ︷︷ ︸
r

∈ Υp+1−r , p ≥ s. (14)

Substituting (13) into (11) and using (14) we get

[ϕ j , g] + νi1 [ϕ j , ϕi1 ] +

s∑
r=2

1
(r − 1)!

(
[ϕ j , νi1...ir−1 ] + νi1...ir [ϕ j , ϕir ]

)
ϕi1 . . . ϕir−1 ∈ Υs .

It is easy to see that a solution to these equations is

νi1...ir = (−1)r Dir . . . Di1 g, r = 1 . . . s. (15)

Here Di = ci j [ϕ j , ·].
One can check that the Di satisfy the commutator relations

Di D j − D j Di = [ci j , ·]D (16)

and for u ∈ Υr

Di u ∈ Υr−1. (17)

Now let us consider Eq. (14). It is sufficient to find a solution to these equations for
a = k + 1, b = k, k = 1 . . . r − 1. Substituting (15) into (14) and using (16) we have

Dir . . . Dik+2 [cik+1ik , Dik−1 . . . Di1 g]D ∈ Υp+1−r , k = 1 . . . r − 1. (18)

A solution to these equations is given by

ci j = a−1
i j + vi j , vi j (η) ∈ Υp−1. (19)
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Here the ai j are constant and det(ai j ) 6= 0.
To check that ci j satisfy Eq. (18) observe that for f ∈ A

[ci j , f ]D ∈ Υp−1

and due to (17)

Dir . . . Dik+2 [cik+1ik , Dik−1 . . . Di1 g]D ∈ Υp+k−r ⊂ Υp+1−r

for all k = 1 . . . r − 1. Thus for ci j (19) expressions (13) and (15) give us a solution to Eq. (11)
with the boundary condition (12).

Let now g̃′ be another solution to Eq. (11) with the same boundary condition g̃′
∈ {g}. Then

σ = g̃ − g̃′ is a solution to (11)

[ϕ j , σ ] ∈ Υs (20)

and σ = σiϕi for some σi = σi (η).
From (20) it follows that

[ϕ j1 , . . . , [ϕ jm−1 , [ϕ j , σ ]]] ∈ Υs−m+1. (21)

Assume that

σ = σi1...im (η)ϕi1 . . . ϕim . (22)

Substituting (22) into (21) for m ≤ s we get σi1...im |ϕ=0 = 0 and hence σ =

σi1...im+1(η)ϕi1 . . . ϕim+1 .
For m = s,

σ = σi1...is+1(η)ϕi1 . . . ϕis+1 .

We have proved the proposition:

Proposition 3.1. For ci j (19) and g ∈ A the set {g} ∩ Ωs+1, s = 1 . . . p, consists of all the
expressions

g̃ = g +

s∑
r=1

(−1)r

r !

(
Dir . . . Di1 g

)
ϕi1 . . . ϕir + νi1...is+1ϕi1 . . . ϕis+1 , (23)

where νi1...is+1(η) are arbitrary functions.

In what follows we shall assume that ci j is given by (19) and 1 ≤ s ≤ p. From condition (19)
it follows that

[ϕi , ϕ j ] = ai j + wi j , wi j (η) ∈ Υp−1. (24)

It is convenient to introduce the notation

Ls(g) = g +

s∑
r=1

(−1)r

r !

(
Dir . . . Di1 g

)
ϕi1 . . . ϕir .

The hamiltonian in Ωs+1 is

H̃T = Ls(H)+ u, u ∈ Υs+1. (25)

It can be represented in the form (2), satisfies Eq. (3) and hence belongs to the family of
admissible hamiltonians.
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4. Algebraic properties of Ω s+1

Proposition 4.1. Ωs+1 is an algebra and Υs+1 is an ideal of Ωs+1 with respect to the original
Poisson bracket, Dirac bracket and pointwise multiplication.

The proof is straightforward.
Due to this proposition Ωs+1,Υs+1 and Ωs+1/Υs+1 are Poisson algebras with respect to

[·, ·]D as well as [·, ·].
Let

g̃a = Ls(ga)+ ua, ua ∈ Υs+1, (26)

a = 1, 2, be some elements of Ωs+1 and let {g̃a}s ∈ Ωs+1/Υs+1 be the coset represented by
g̃a ∈ Ωs+1.

Proposition 4.2. For g̃1, g̃2 (26) one has

[g̃1, g̃2] = Ls([g1, g2]D)+ ũ12, [g̃1, g̃2]D = Ls([g1, g2]D)+ ṽ12, (27)

g̃1g̃2 = Ls(g1g2)+ w̃12, ũ12, ṽ12, w̃12,∈ Υs+1.

Proof. One can check that [g̃1, g̃2] satisfies Eq. (11) with the boundary condition [g̃1, g̃2] ∈

{[g1, g2]D}. Due to results of the previous section one has

[g̃1, g̃2] = Ls([g1, g2]D)+ ũ12, ũ12 ∈ Υs+1.

Other statements of the proposition are proved by using similar arguments. �

Corollary 4.3. The Dirac bracket algebra Ωs+1/Υs+1 is isomorphic to the algebra Ωs+1/Υs+1
with respect to the original Poisson bracket.

Proof. From Eq. (27) we have

[{g̃1}s, {g̃2}s] = [{g̃1}s, {g̃2}s]D = {Ls([g1, g2]D)}s . �

5. New realizations of observables

Theorem 5.1. (i) The Dirac bracket algebra A/Φ is isomorphic to the algebra Ωs+1/Υs+1 with
respect to the original Poisson bracket.

(ii) A/Φ and Ωs+1/Υs+1 are isomorphic with respect to the pointwise multiplication.

Proof. Let us define the linear function Ts : Ωs+1/Υs+1 → A/Φ

Ts({g}s) = {g}.

Each function g′
∈ {g}

⋂
Ωs+1 can be written in the form (23). Hence the inverse function

T −1
s : A/Φ → Ωs+1/Υs+1 is given by

T −1
s ({g}) = {Ls(g)}s .

Computations show that Ts is the homomorphism

Ts([{g}s, { f }s]) = [Ts({g}s), Ts({ f }s)]D

and hence A/Φ and Ωs+1/Υs+1 are isomorphic.
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To prove the second statement we observe that Ts is the homomorphism with respect to
pointwise multiplication:

Ts({g}s{ f }s) = Ts({g f }s) = {g f } = {g}{ f } = Ts({g}s)Ts({ f }s). �

Corollary 5.1. Ωs+1/Υs+1, s = 1 . . . p, are isomorphic to each other as Poisson algebras.

The function Ts+k,s which defines isomorphism between Ωs+k+1/Υs+k+1, k ≥ 0, and
Ωs+1/Υs+1 is given by

Ts+k,s({g}s+k) = {g}s .

Theorem 5.1 gives us new realizations of the algebra of observables A/Φ through the original
Poisson bracket. For a given system we have p realizations, where p is defined by the form of
ci j (19) or [ϕi , ϕ j ] (24).

For p = 1 [ϕi , ϕ j ] ∈ Υ0 = A and there is only one realization Ω2/Υ2 = Ω/Υ .
Let us consider the constraints of a gauge theory (πα(η), χβ(η)), α, β = 1 . . .M ,

[πα, πβ ] = fαβγ (η)πγ , [πα, χβ ] = gαβ(η), [χα, χβ ] = 0. (28)

Here πα are first class constraints, χβ are gauge fixing conditions and det(gαβ) 6= 0. With the
new gauge fixing conditions χ ′

α = g−1
βαχβ Eq. (28) take the form (24) for p = 2:

[πα, πβ ] = fαβγ (η)πγ , [πα, χ
′
β ] = δαβ + aα(η)χ

′
α, [χ ′

α, χ
′
β ] = bα(η)χ

′
α.

Here aα(η) and bα(η) are some functions. In this case the observables can be realized by Ω/Υ
or Ω3/Υ3.

When [ϕi , ϕ j ] = ψi j (ϕ), where ψi j (ϕ) are functions of the constraints (ϕ j ) only, there is an
infinite series of such realizations. The number p can be used for classification of second class
constraints.

According to (4) and (3) the Hamilton equation in Ωs+1/Υs+1 is

d
dt

{ f }s = [{ f }s, {H̃T }s].

Here H̃T is given by (25).

6. Conclusion

In the present article we have obtained new realizations of observables in dynamical systems
with second class constraints. The observables are realized as Poisson algebras with respect to the
original bracket. We have found the restrictions which are imposed on constraints by construction
of such algebras. The number of possible realizations of the observables for a given system can
be used for classification of second class constraints. We have obtained explicit expressions for
generators and brackets of all the algebras under consideration.
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